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The operating fleet of light water nuclear reactors in the United States is undergoing modernization from analog to partially digitalized 
environments, and the advent of new plant designs will feature fully digital control rooms. Retrofitting legacy instrumentation and 

controls (I&C) and new digital concepts of operations require significant increases in the level of automation, incorporating artificial 
intelligence (AI) and machine learning (ML). Human-centered AI (HCAI) is a combination of human-centered design (human factors, 
human-in-the-loop, etc.) combined with AI/ML to design an efficient, reliable system with full consideration for human engagement. 

The transition from digital to AI-automation does not have an industry-ready template, and significant research is needed to bridge the 
gaps and maximize the application of AI. This paper provides a comprehensive and novel discussion of HCAI considerations in 

nuclear power, highlighting unique applications for the existing fleet and new advanced reactor designs. We end with a real-life use 
case of AI applications to work management in nuclear power plants (NPPs) and lessons learned. 

 

INTRODUCTION 
 

The operating fleet of light water nuclear reactors in the 
United States relies heavily on analog I&C systems. A recent 
wave of modernization has brought upgrades in the form of 
partially digitized control rooms, while new plant designs 
feature fully digital control rooms. With the advent of smaller, 
advanced reactors like microreactors and small modular 
reactors, there is a need to reduce human staffing levels to 
ensure operating efficiencies and cost competitiveness. Such 
concepts of operations will require significant increases in the 
level of automation deployed at future NPPs, which would 
involve incorporating AI and ML. The transition from digital 
to automation does not have an industry-ready template, and 
significant research is needed to bridge the gaps and maximize 
the application of AI/ML, especially in control systems.  

Human-centered AI (HCAI) is a combination of human-
centered design (human factors, human-in-the-loop, etc.) 
combined with AI to design an efficient, reliable system with 
full consideration for human engagement (Shneiderman, 
2020). This approach supports AI development, evaluation and 
use with humanistic design and control, ensuring human-in-
the-loop with respect to sustained interaction and ongoing 
collaboration between humans and the technology throughout 
its lifecycle. This includes controlling how to arrive at an 
endpoint and moves away from historical viewpoints of AI as 
pure science and mathematical advancements, towards one 
that is interactive with humans and used to empower human 
capabilities.  

HCAI is an evolution of human-centric automation which 
has been around for several decades. First principles have 
been developed in the aviation space positing that automation 
technologies be designed as tools with human use as the 
primary focus of attention (Billings, 1996). This is because as 
with nuclear power operators, aircraft operators bear 
responsibility for safety, and so must possess ultimate 
authority. Human-centered automation requires that operators 

be actively involved and appropriately informed, be able to 
understand and predict the automation, and benefit from 
automation that offers checks and balances to human actions 
when necessary. 

While the application of human factors engineering in 
nuclear power operations is reviewed and regulated by the 
U.S. Nuclear Regulatory Commission (NRC), the human 
factors implications for AI in nuclear are in development. An 
HCAI-nuclear framework provides for function analysis that 
supports humans in their new roles at the plants alongside the 
AI technology, but to do so automation is needed that teams 
well with the operator, including interventions for safety 
reasons. 

We firstly introduce AI/ML applications in nuclear that 
are both currently underway and in the works. These span 
concepts that are both retrofitted to the large traditional 
reactors that comprise the existing fleet, as well a new 
advanced reactors such as small modular and microreactors. 
We then describe the human factors and human-centered 
design considerations that can help support efficient, reliable 
systems with full consideration for human engagement. 
Although AI/ML technologies face different challenges across 
existing and new reactors, HCAI considerations are similar. 
We end with examples of real-world AI deployment within the 
industry that has produced mixed outcomes and that can 
inform an HCAI framework moving forward. 
 

AI/ML APPLICATIONS IN NUCLEAR POWER 
 

A small number of AI applications are already in use, 
albeit in a limited capacity. These mainly involve automating 
routine processes including work management, document 
retrieval, and using AI to help with regulatory affairs (Nuclear 
Energy institute, 2024). Notwithstanding, there is great interest 
to expand AI use and in coming years the deployment of AI 
technologies within the energies industries is anticipated to be 
prolific. To this end, the International Electrotechnical 



Commission (IEC) have begun issuing standards for AI 
development and process (IEC, 2024), data life cycle models 
(IEC, 2023) and assessment of ML classification performance 
(IEC, 2022). In the advanced reactor space, AI applications are 
poised to span the lifecycle including reactor design, 
operations and maintenance (O&M), materials, grid, storage, 
and through decommissioning (Vilim and Ibarra, 2022).  

Figure 1 depicts four key research areas in which AI/ML 
will be used to convert data into information generating new 
actionable insights. Each of these new technical areas can 
lower O&M costs, increase reliability and with new advanced 
designs, AI may be used to support remote, and near-
autonomous operations (Agarwal, 2024).  
 
Sensors and Instrumentation 
 

A significant cost to existing NPPs is preventative 
maintenance programs in which plant equipment, components 
and systems undergo cyclic manual inspections to ensure 
functionality and avoid failure. These labor-intensive rounds 
are carried out routinely whether the parts and systems appear 
degraded or not. 

One of the modernization strategies in recent years has 
been to install data capture technologies such as sensor 
hardware with corresponding bandwidth and computing 
capabilities (Al Rashdan and St Germain, 2018). Digitizing 
infrastructure in this way has allowed for vast quantities of 
component data that can feed ML algorithms to shift 
maintenance activities from preventive to predictive measures, 
resulting in significant cost-savings.  

A recent application of this nature has been to identify the 
likelihood of waterbox fouling (Agarwal et al., 2021, Agarwal 
et al., 2022; Walker et al., 2023), a common maintenance 
activity for pressurized water reactors. This water pump 
blockage occurs when debris such as grass and leaves from the 
water source used to cool the reactor (e.g., river) builds up 
over time. Thus, instead of periodic, paper-based and manual 

inspections, ML algorithms can make use of plant indicator 
data already available such as motor vibration, current, 
temperature, system condenser, and turbine and vacuum 
values to form condition-based monitoring that can generate 
waterbox fault predictions.  

 
Communications 
 

Advances in wireless communications are being applied 
to industrial automation (Manjunatha & Agarwal 2022). In 
NPPs, communications advances that provide continuous 
access to plant data are necessary to help reduce industrial risk 
and enhance operational efficiency and effectiveness. Given 
the increased cybersecurity risk that NPPs face, the nuclear 
industry has traditionally been cautious with regard wireless 
communications, largely opting to keep data private and 
guarded, in closed loop systems within the plant (Hall & 
Agarwal, 2024). 

The full business potential afforded by a wireless 
infrastructure stems from plant data being monitored and 
analyzed with subsequent diagnosis and prognosis. To realize 
this benefit, data quality and integrity must be intact (i.e., 
garbage-in-garbage-out (Awati, 2023)). Research efforts are 
underway to apply AI to predict data anomalies at the sensor 
level (Agarwal, 2024). This smart sensor application filters 
sensor data through an AI model validation process that can 
detect malfunction, operating limits and baselines values 
before ongoing data transmission. 

 
Big data, ML, AI 
 

Most U.S. reactors were commissioned in the 1970s and 
1980s and are among the oldest NPPs worldwide with a mean 
age M=41.6 years (U.S. Energy Information Administration, 
2023). Initially licensed for 40 years, many plants have either 
been approved, or are in the approval process for 20 or 40 
years licensure extensions. To maintain safety, structural 

 

Figure 1. Applications of AI/ML in nuclear power 

 



degradation due to age and wear and tear is carefully 
monitored. However, this process currently lacks for advanced 
technology solutions that can make use of big data and AI/ML. 

The structural integrity of the plants can be compromised 
by Alkali-Silica Reaction (ASR), an intrinsic chemical 
reaction that forms a gel in concrete pores, that expands 
causing stress and cracking. In addition, ASR can be correlated 
with corrosion of steel embedded in the concrete. AI can be 
applied to detect, localize, and estimate ASR damage using a 
physics-informed ML approach. This technique creates 
diagnostic and prognostic models that offer data-based 
decision-making on structural health monitoring to replace the 
current offline and manual approach. 

 
Advanced Control Systems 
 

Although not yet commercially operational in the U.S., 
intense research and development is underway for advanced 
reactors. These new concepts of operations (conops) promise 
improvements such as passive safety features, better fuel and 
material performance, reduced waste, and many O&M 
benefits. Unlike large, traditional NPPs that generate 700+ 
MWe per unit, and that can power small cities, most advanced 
reactors are smaller in size such as small modular reactors 
(~50-300MWe) and microreactors (<50MWe). These 
transportable conops can be broadly distributed and are 
envisioned for industrial applications and to power remote and 
isolated areas such as mining sites (International Atomic 
Energy Agency, 2023). Other advanced conops include fusion 
or radioisotope technologies. 

Research efforts are underway that strive to realize AI-
enabled remote and autonomous operations. One such project 
is an anticipatory control strategy for microreactors, that uses 
neural-network-based models to self-regulate under varying 

operational conditions (Lin et al., 2024). These conditions 
include steady state and transient operations, load following, 
and failure or degraded operations. In comparison to physics-
based models, data-driven anticipatory control approaches are 
stated to produce computationally efficient, accurate, and 
adaptive semi-autonomous operations (Agarwal, 2024). 

HCAI CONSIDERATIONS FOR EXISTING AND 
ADVANCED REACTORS 

Figure 2 describes a human-centered approach to AI 
deployment in nuclear such that humans be involved in all 
phases of the technology’s lifecycle from development, 
through evaluation and use. For many of the advanced AI 
applications described, from predictive maintenance to 
structural health monitoring, their success depends on data 
quality and integrity. While AI tools may help detect sensor 
data anomalies, human verification will be necessary to ensure 
accurate, reliable and contextualized data is feeding the 
algorithms in the first place. This may require new personnel 
roles be created such as Data Scientist or Analyst. In terms of 
AI evaluation, there are training implications because the 
ability to interpret and verify ML recommendations generated 
from multiple data sources is a new analytical skill and new 
mode of O&M not currently conducted at plants. 

In addition, to satisfy defense in depth safety 
requirements, the technology must be designed to not only 
support employees with deep understanding of the automated 
systems, but also each intelligent component must possess an 
understanding of the function and intent of all other intelligent 
automated systems (Billings, 1996). 

For inspection tasks that are replaced by sensors, situation 
awareness may decrease as elimination of manual inspection 
also eliminates operators noticing other fault scenarios on their 

 
Figure 2. Human-centered AI in the technology’s lifecycle 



rounds (e.g., leaking pipes unrelated to the system the AI is 
monitoring). Further, design of any ML interface should 
comport with HCAI principles such that the information is 
presented in a digestible and explainable manner that the 
humans can understand.  

For control tasking to meet autonomous and near-
autonomous operations, all existing conops invariably require 
humans to monitor the automation, and certainly act as 
failsafes or “backups” when the automation fails (Hall et al., 
2024). Several decades of human factors research highlight 
automation ‘trade-offs’, including turning once-experts into 
novices when put in situations where passive monitoring is 
required and there are no longer any active tasks to perform 
(i.e., skills degradation; McLeod et al., 2022). Further, 
vigilance decrement occurs in humans after about 10 minutes 
of monitoring, which results in reduced situation awareness, 
pointing to humans being ill-suited for automation monitoring 
in the human-AI teaming relationship (Sheridan, 2002). The 
precise role of humans in AI deployment for control functions 
will have to be carefully articulated, tested and verified to 
ensure safe and efficient operations. 

Trust and explainability are central components to HCAI. 
Trust has been shown to be one of the leading factors in 
whether users will rely on automated processes. Trust in 
automation has a rich literature in human factors research and 
can be considered either as an information-based set of beliefs 
about the automation (cognitive), or the corresponding 
reliance and use of the automation (behavioral). EXplainable 
AI (XAI) is synonymous with transparency in automation and 
has grown in importance as increasingly larger numbers of 
people outside computing science or intelligent systems 
interact with AI. XAI serves to ensure human-in-the-loop with 
respect to transparency in reaching an endpoint and increases 
user trust (Ali et al., 2023).  

Advanced reactors can benefit from HCAI being built into 
the design, while legacy plants must contend with AI 
retrofitting, and the corresponding changes to staff roles and 
responsibilities. However, without advanced reactors 
possessing established operational safety and reliability, 
adding layers of functional complexity through AI may prove 
challenging for the regulator. Further, and the lack of historical 
operational experience data needed to support AI applications 
will further exacerbate these concerns.   

Advanced reactor designs with in-built AI applications 
will be seeking regulatory assurances and may be viewed in 
light of demonstrated success of AI-applications to the 
existing fleet. New AI-assisted functions will realize new 
economic and efficiency benefits, but they will also bring 
about new costs and challenges. Greater departures from 
current O&M activities will attract greater scrutiny, especially 
for AI technologies involved in control and safety functions. 
The role and authority of the human operators will be of chief 
concern (Billings, 1996). 

AI/ML USE CASES IN NUCLEAR POWER 
 

The application of AI in nuclear plants is already 
underway. Currently, it is largely confined to automating 
routine processes that require a great deal of paperwork and 
with checks and balances across different departments. Here 
we evaluate real world instances in which AI has been applied, 
and discuss lessons learned for HCAI moving forward. 

NPP performance improvement processes have evolved 
over time adding more rigor and capability, but also adding 
more administration to manage the improvements. One of the 
most important performance improvement processes is the 
Corrective Action Program (CAP) which consists of a series of 
actions from reporting through screening, evaluating, 
responding to, and trending of issues that arise at the plant. 
The administration of all these functions is labor intensive and 
time consuming.  

In 2016, the Nuclear Energy Institute (NEI), the policy 
organization for the nuclear utilities, in collaboration with the 
NRC issued a series of documents under the ‘Delivering the 
Nuclear Promise’ (DNP) initiative (NEI, 2016, 2017), which 
was a multi-year strategy aimed at transforming the industry 
and finding significant performance and economic 
improvements while maintaining safety. Over the course of the 
next several years, the DNP initiative rolled out a series of 
guidance documents on how to achieve this vision, including 
two concerning greater efficiency in CAP.  

As a result, many utilities made changes to their CAP by 
reducing perceived low value processes within the program 
that added significant “administrative burden”. For some, this 
meant implementing ML-driven AI programs that performed 
screening functions of the condition reports, the first step in 
the CAP process, which was previously performed by a 
collegial group of individuals from various departments. These 
changes resulted in immediate O&M cost savings for the 
utility, and Top Industry Practice awards were issued to some 
utilities that implemented AI applications in the CAP process. 
This acknowledgement drove other U.S. utilities to strive for 
the same type of AI programs to help with their CAP 
administration. 

However, although implementation of the AI reduced the 
administrative burden of managing CAP, one of the 
consequences of the automation was a reduction in cognitive 
information processing and trending of condition reports, that 
were previously performed by humans. Together these 
provided a defense to more significant events, or failures. 
Consequently, some of the utilities that have implemented AI 
enhancements to CAP have not only realized more failures, 
but also without the ability to fully understand the underlying 
causes due to inadequate human engagement in processing at 
the lower-level condition reports. 

In some cases, the utility saw an overall decline in plant 
performance. Although it is difficult to attribute this 
performance decline directly to the implementation of the AI, 
a lack of information to feed human decision-making could be 
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a contributor. The old CAP process historically offered an 
effective real-time communication pipeline between 
departments and levels of the organization to raise issues 
unfiltered. Disruption of this process via AI-tools may have 
led to lowered collective situation / system awareness of the 
issues within the plant, and thus lowered the possibility to 
identify and troubleshoot problematic trends over time that 
highlighted underlying organizational and / or programmatic 
causes. In at least one plant, there was an instance of a 
downstream reduction in the plant’s senior leadership team to 
be able to make informed decisions concerning the condition 
of the plant’s equipment, and the organization as a whole.    

These examples underscore the importance of human 
engagement in the development, evaluation and use of AI 
technologies in nuclear (Figure 2) for work management 
processes, as well as the unforeseen consequences that can be 
brought about absent human factors considerations. Beyond 
failures of the automation in its primary screening function for 
CAP, an HCAI framework can help mitigate problems 
downstream by ensuring the correct level of human 
engagement in the ongoing evaluation of issues raised at the 
plant.  
 

CONCLUSIONS 
 

NPPs contain complex sociotechnical integration systems, 
and while automation and AI technologies can and do improve 
system performance, full consideration of HCAI is yet to be 
understood. Human factors research is necessary to examine 
human-system performance indicators with AI-enhanced tools, 
especially with advanced controls. The human-intelligent 
agent teaming relationship and training requirements for AI-
augmented job functions will also have to be explicated. 

 
REFERENCES 

 
Agarwal, V. (February, 2024). Application of artificial intelligence and 

machine learning in nuclear: Benefits, challenges, and 
opportunities. 5th International Conference on Reliability, Safety, 
and Hazard. DAE Convention Center, Anushaktinagar, Mumbai, 
India. 

Agarwal, V., Manjunatha, K., Smith, J.A., Gribok, A.V., Yadav, V., Palas, H., 
Yarlett, M., Goss, N., Yurkovich, S., & Diggans, B. (2021). 
Machine learning and economic models to enable risk-informed 
condition-based maintenance of a nuclear plant asset. 

Agarwal, V., Walker, C.M., Manjunatha, K., Mortenson, T.J., Lybeck, N.J., 
Hall, A., Hill, R., & Gribok, A.V. (2022). Technical basis for 
advanced artificial intelligence and machine learning adoption in 
nuclear power plants. Idaho National Laboratory. INL/RPT-22-
68942. 

Ali, S., Abuhmed, T., El-Sappagh, S., Muhammad, K., Alonso-Moral, J. M.,... 
& Herrera, F. (2023). Explainable artificial intelligence (XAI): 
What we know and what is left to attain trustworthy artificial 
intelligence. Information Fusion, 99, 101805. 

Al Rashdan, A.Y., St Germain, S.W., 2018. Automation of data collection 
methods for online monitoring of nuclear power plants. Idaho 
National Laboratory. INL-EXT-18-51456. 

Awati, R., 2023. Garbage in, garbage out. TechTarget. Retrieved 1 JUNE 
from: 

https://www.techtarget.com/searchsoftwarequality/definition/garba
ge-in-garbage-out. 

Billings, C. E. (1996). Human-centered aviation automation: Principles and 
guidelines (No. NASA-TM-110381). 

Hall, A., & Agarwal, V. (2024). Barriers to adopting artificial intelligence and 
machine learning technologies in nuclear power. Progress in 
Nuclear Energy, 175, 105295. 

Hall, A., Le Blanc, K., Miyake, T., Boring, R., & Kovesdi, C. (2024). Draft 
landscape analysis of anticipated use of autonomous operations. 
Idaho National Laboratory. Research Information Letter.                            
Office of Nuclear Regulatory Research. 

International Atomic Energy Agency. (2023). What are Small Modular 
Reactors (SMRs)? Retrieved from 
https://www.iaea.org/newscenter/news/what-are-small-modular-
reactors-smrs  

International Electrotechnical Commission, 2022. Information Technology — 
Artificial Intelligence — Assessment of Machine Learning 
Classification Performance (ISO/IEC TS 4213:2022, Issue. 

International Electrotechnical Commission, 2023. Information Technology — 
Artificial Intelligence — Data Life Cycle Framework. ISO/IEC 
8183:2023, Issue. 

International Electrotechnical Commission, 2024. Information Technology — 
Artificial Intelligence — Guidance for AI Applications. ISO/IEC 
5339:2024, Issue.  

Lin, L., Oncken, J., & Agarwal, V. (2024). Autonomous control for Heat-Pipe 
microreactor using Data-Driven model predictive control. Annals 
of Nuclear Energy, 200, 110399. 

Manjunatha, K. A., & Agarwal, V. (2022). Multi-band heterogeneous wireless 
network architecture for industrial automation: A techno-economic 
analysis. Wireless Personal Communications, 123(4), 3555-3573. 

McLeod, R. (2022). Human factors in highly automated systems [White 
Paper]. Chartered Institute of Ergonomics and Human Factors. 

Nuclear Energy Institute (2016). Reduce cumulative impact from the 
corrective action program. Efficiency Bulletin: 16-10. 

Nuclear Energy Institute (2017). Improving the effectiveness of issue 
resolution to enhance safety and efficiency. NEI 16-07 (Revision 
A). 

Nuclear Energy Institute (2024). Survey on Uses of Artificial Intelligence. 
[Draft]. Personal communication. 

Sheridan, T. (2002). Humans and Automation: System Design and Research 
Issues. New York: Wiley & Sons. 

Shneiderman, B. (2020). Human-centered artificial intelligence: Reliable, safe 
& trustworthy. International Journal of Human–Computer 
Interaction, 36(6), 495-504. 

US Energy Information Administration, 2023. Nuclear explained: U.S. nuclear 
industry. Retrieved 10 DECEMBER from. 
https://www.eia.gov/energyexplained/nuclear/us-nuclear-
industry.php. 

Vilim, R., & Ibarra, L. (2022). Artificial Intelligence/machine Learning 
Technologies for Advanced Reactors: Workshop Summary Report. 

Walker, C.M., Agarwal, V., Lin, L., Hall, A.C., Hill, R.A., Boring PhD, R.L., 
Mortenson, T. J., Lybeck, N.J., 2023. Explainable artificial 
intelligence technology for predictive maintenance. INL/RPT-23-
74159. https://doi.org/10.2172/1998555. 

 

 

https://www.iaea.org/newscenter/news/what-are-small-modular-reactors-smrs
https://www.iaea.org/newscenter/news/what-are-small-modular-reactors-smrs

